Independence Number and Disjoint Theta Graphs
نویسندگان
چکیده
منابع مشابه
Independence Number and Disjoint Theta Graphs
The goal of this paper is to find vertex disjoint even cycles in graphs. For this purpose, define a θ-graph to be a pair of vertices u, v with three internally disjoint paths joining u to v. Given an independence number α and a fixed integer k, the results contained in this paper provide sharp bounds on the order f(k, α) of a graph with independence number α(G) ≤ α which contains no k disjoint ...
متن کاملIndependence number and vertex-disjoint cycles
In this paper we consider graphs which have no k vertex-disjoint cycles. For given integers k, let f (k, ) be the maximum order of a graph G with independence number (G) , which has no k vertex-disjoint cycles. We prove that f (k, ) = 3k + 2 − 3 if 1 5 or 1 k 2, and f (k, ) 3k + 2 − 3 in general. We also prove the following results: (1) there exists a constant c (depending only on ) such that f...
متن کاملSufficient Condition for the Existence of Three Disjoint Theta Graphs
A theta graph is the union of three internally disjoint paths that have the same two distinct end vertices. We show that every graph of order n ≥ 12 and size at least ⌊ 11n−18 2 ⌋ contains three disjoint theta graphs. As a corollary, every graph of order n ≥ 12 and size at least ⌊ 11n−18 2 ⌋ contains three disjoint cycles of even length. 1. Terminology and introduction In this paper, we only co...
متن کاملEdge-disjoint paths in digraphs with bounded independence number
A digraph H is infused in a digraph G if the vertices of H are mapped to vertices of G (not necessarily distinct), and the edges of H are mapped to edge-disjoint directed paths of G joining the corresponding pairs of vertices of G. The algorithmic problem of determining whether a fixed graph H can be infused in an input graph G is polynomial-time solvable for all graphs H (using paths instead o...
متن کاملOn the k-independence number in graphs
For an integer k ≥ 1 and a graph G = (V,E), a subset S of V is kindependent if every vertex in S has at most k − 1 neighbors in S. The k-independent number βk(G) is the maximum cardinality of a kindependent set of G. In this work, we study relations between βk(G), βj(G) and the domination number γ(G) in a graph G where 1 ≤ j < k. Also we give some characterizations of extremal graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2011
ISSN: 1077-8926
DOI: 10.37236/637